Metaheuristics for IoT Network Security Optimization in Urban Smart City Environments Sam M. K., Weiguo Gee, Sofia Arkhstan - 1. The Higher Institute of Telecommunication & Engineering, Information Technology Department, Philippines - 2. School of Computer System, Hebei University of Engineering, Handan, Hebei, 056038, China - 3. Department of Computer System, South Ural State University, 454080 Chelyabinsk, Russia #### **Abstract:** The proliferation of Internet of Things (IoT) devices in urban smart city environments introduces significant security challenges, including data privacy risks, unauthorized access, and network vulnerabilities. This study explores the application of metaheuristic algorithms to optimize IoT network security in smart cities. By leveraging algorithms such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO), the research focuses on developing an adaptive security framework that dynamically adjusts to evolving threats in real-time. The proposed system employs metaheuristics to optimize security protocols, enhance encryption methods, and detect anomalous activities within IoT networks. Simulation results demonstrate the effectiveness of these algorithms in improving intrusion detection, minimizing energy consumption, and ensuring the robustness of IoT systems against cyberattacks. This research highlights the potential of metaheuristic optimization techniques in addressing the growing security concerns of IoT networks in smart cities, providing a scalable and efficient solution for safeguarding urban infrastructure and public data. #### **Keywords:** IoT network security, metaheuristics, smart cities, optimization, cyberattack prevention, adaptive security. # REQUEST FOR FULL TEXT ## REFERENCES - El-Kenawy, E. S. M., Eid, M. M., Saber, M., & Ibrahim, A. (2020). MbGWO-SFS: Modified binary grey wolf optimizer based on stochastic fractal search for feature selection. IEEE Access, 8, 107635-107649. - [2] El-Kenawy, E. S., & Eid, M. (2020). Hybrid gray wolf and particle swarm optimization for feature selection. Int. J. Innov. Comput. Inf. Control, 16(3), 831-844. - [3] El-Kenawy, E. S. M., Khodadadi, N., Mirjalili, S., Abdelhamid, A. A., Eid, M. M., & Ibrahim, A. (2024). Greylag goose optimization: nature-inspired optimization algorithm. Expert Systems with Applications, 238, 122147. - [4] Abdollahzadeh, B., Khodadadi, N., Barshandeh, S., Trojovský, P., Gharehchopogh, F. S., El-kenawy, E. S. M., ... & Mirjalili, S. (2024). Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning. Cluster Computing, 27(4), 5235-5283 - [5] Khodadadi, N., Khodadadi, E., Al-Tashi, Q., El-Kenawy, E. S. M., Abualigah, L., Abdulkadir, S. J., ... & Mirjalili, S. (2023). BAOA: binary arithmetic optimization algorithm with K-nearest neighbor classifier for feature selection. IEEE Access, 11, 94094-94115. - [6] Khodadadi, N., Abualigah, L., El-Kenawy, E. S. M., Snasel, V., & Mirjalili, S. (2022). An archive-based multi-objective arithmetic optimization algorithm for solving industrial engineering problems. IEEE Access, 10, 106673-106698. - [7] El-Kenawy, E. S. M. T., & SM, E. (2019). A machine learning model for hemoglobin estimation and anemia classification. International Journal of Computer Science and Information Security (IJCSIS), 17(2), 100-108. - [8] El-kenawy, E. S. M. T. (2018). Solar radiation machine learning production depend on training neural networks with ant colony optimization algorithms. International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE), 7(5), - [9] Hassib, E. M., El-Desouky, A. I., Labib, L. M., & El-Kenawy, E. S. M. (2020). WOA+ BRNN: An imbalanced big data classification framework using Whale optimization and deep neural network. soft computing, 24(8), 5573-5592. - [10] Kaveh, A., Talatahari, S., & Khodadadi, N. (2019). The hybrid invasive weed optimization-shuffled frog-leaping algorithm applied to optimal design of frame structures. Periodica Polytechnica Civil Engineering, 63(3), 882-897. - [11] Khodadadi, N., Abualigah, L., & Mirjalili, S. (2022). Multi-objective stochastic paint optimizer (MOSPO). Neural Computing and Applications, 34(20), 18035-18058. - [12] Kaveh, A., Talatahari, S., & Khodadadi, N. (2022). Stochastic paint optimizer: theory and application in civil engineering. Engineering with Computers, 1-32. - [13] Khodadadi, N., & Mirjalili, S. (2022). Truss optimization with natural frequency constraints using generalized normal distribution optimization. Applied Intelligence, 52(9), 10384-10397. - [14] Khodadadi, N., Soleimanian Gharehchopogh, F., & Mirjalili, S. (2022). MOAVOA: a new multi-objective artificial vultures optimization algorithm. Neural Computing and Applications, 34(23), 20791-20829. - [15] Khodadadi, N., Abualigah, L., Al-Tashi, Q., & Mirjalili, S. (2023). Multi-objective chaos game optimization. Neural Computing and Applications, 35(20), 14973-15004.