Feature Selection Optimization in Renewable Energy Grid Management Using Machine Learning Algorithms
Volume 4
Abstract
Effective management of renewable energy grids is critical for ensuring a stable, sustainable energy supply, especially with the increasing integration of renewable sources such as solar and wind energy. This study investigates feature selection optimization techniques applied to renewable energy grid management through machine learning algorithms. The research focuses on identifying and selecting the most relevant features from large datasets generated by energy sensors, grid controllers, and weather forecasts. By leveraging machine learning algorithms, including Random Forest, Support Vector Machines (SVM), and Gradient Boosting, the study optimizes the grid's energy distribution and load balancing while improving grid reliability and efficiency. Feature selection methods such as Recursive Feature Elimination (RFE) and Mutual Information (MI) are used to reduce dimensionality, minimize computational complexity, and enhance the performance of predictive models. The results show that the optimized machine learning models, powered by carefully selected features, significantly improve the forecasting accuracy and operational efficiency of renewable energy grids, leading to better integration of renewable resources and optimized energy consumption.
Keywords
Feature selection, renewable energy, grid management, machine learning, optimization, predictive modelling
References
- [1] El-Kenawy, E. S. M., Eid, M. M., Saber, M., & Ibrahim, A. (2020). MbGWO-SFS: Modified binary grey wolf optimizer based on stochastic fractal search for feature selection. IEEE Access, 8, 107635-107649.
- [2] El-Kenawy, E. S., & Eid, M. (2020). Hybrid gray wolf and particle swarm optimization for feature selection. Int. J. Innov. Comput. Inf. Control, 16(3), 831-844.
- [3] El-Kenawy, E. S. M., Khodadadi, N., Mirjalili, S., Abdelhamid, A. A., Eid, M. M., & Ibrahim, A. (2024). Greylag goose optimization: nature-inspired optimization algorithm. Expert Systems with Applications, 238, 122147.
- [4] Abdollahzadeh, B., Khodadadi, N., Barshandeh, S., Trojovský, P., Gharehchopogh, F. S., El-kenawy, E. S. M., ... & Mirjalili, S. (2024). Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning. Cluster Computing, 27(4), 5235-5283.
- [5] Khodadadi, N., Khodadadi, E., Al-Tashi, Q., El-Kenawy, E. S. M., Abualigah, L., Abdulkadir, S. J., ... & Mirjalili, S. (2023). BAOA: binary arithmetic optimization algorithm with K-nearest neighbor classifier for feature selection. IEEE Access, 11, 94094-94115.
- [6] Khodadadi, N., Abualigah, L., El-Kenawy, E. S. M., Snasel, V., & Mirjalili, S. (2022). An archive-based multi-objective arithmetic optimization algorithm for solving industrial engineering problems. IEEE Access, 10, 106673-106698.
- [7] El-Kenawy, E. S. M. T., & SM, E. (2019). A machine learning model for hemoglobin estimation and anemia classification. International Journal of Computer Science and Information Security (IJCSIS), 17(2), 100-108.
- [8] El-kenawy, E. S. M. T. (2018). Solar radiation machine learning production depend on training neural networks with ant colony optimization algorithms. International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE), 7(5), 1-4.
- [9] Hassib, E. M., El-Desouky, A. I., Labib, L. M., & El-Kenawy, E. S. M. (2020). WOA+ BRNN: An imbalanced big data classification framework using Whale optimization and deep neural network. soft computing, 24(8), 5573-5592.
- [10] Kaveh, A., Talatahari, S., & Khodadadi, N. (2019). The hybrid invasive weed optimization-shuffled frog-leaping algorithm applied to optimal design of frame structures. Periodica Polytechnica Civil Engineering, 63(3), 882-897.
- [11] Khodadadi, N., Abualigah, L., & Mirjalili, S. (2022). Multi-objective stochastic paint optimizer (MOSPO). Neural Computing and Applications, 34(20), 18035-18058.
- [12] Kaveh, A., Talatahari, S., & Khodadadi, N. (2022). Stochastic paint optimizer: theory and application in civil engineering. Engineering with Computers, 1-32.
- [13] Khodadadi, N., & Mirjalili, S. (2022). Truss optimization with natural frequency constraints using generalized normal distribution optimization. Applied Intelligence, 52(9), 10384-10397.
- [14] Khodadadi, N., Soleimanian Gharehchopogh, F., & Mirjalili, S. (2022). MOAVOA: a new multi-objective artificial vultures optimization algorithm. Neural Computing and Applications, 34(23), 20791-20829.
- [15] Khodadadi, N., Abualigah, L., Al-Tashi, Q., & Mirjalili, S. (2023). Multi-objective chaos game optimization. Neural Computing and Applications, 35(20), 14973-15004.