JCSIS
JCSIS

Neural Network-Based Optimization in Antenna Design for IoT Network Applications and Beyond

Sam M. K.Weiguo GeeSofia Arkhstan
Volume 4

Abstract

The integration of neural network-based optimization techniques into antenna design has significantly advanced the development of efficient and adaptable antennas for Internet of Things (IoT) applications and beyond. Deep learning models, particularly convolutional neural networks (CNNs), have been employed to predict and optimize antenna performance metrics such as gain, efficiency, and radiation patterns, enabling the design of antennas that meet specific application requirements. Optimization-oriented methods using deep neural learning have demonstrated the potential to streamline the antenna design process in automated environments. Additionally, machine learning frameworks have been used to swiftly optimize antennas by leveraging surrogate models and intelligent criteria, reducing computational costs while maintaining design accuracy. These advancements underscore the transformative impact of neural network-based optimization in antenna design, facilitating the development of antennas that are not only efficient but also adaptable to the dynamic requirements of modern wireless communication systems.


Keywords

Neural Networks, Antenna Design, Optimization, IoT Applications, Deep Learning, Wireless Communication

References

  • [1] El-Kenawy, E. S. M., Ibrahim, A., Mirjalili, S., Eid, M. M., & Hussein, S. E. (2020). Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images. IEEE access, 8, 179317-179335.
  • [2] El-Kenawy, E. S. M., Eid, M. M., Saber, M., & Ibrahim, A. (2020). MbGWO-SFS: Modified binary grey wolf optimizer based on stochastic fractal search for feature selection. IEEE Access, 8, 107635-107649.
  • [3] El-Kenawy, E. S., & Eid, M. (2020). Hybrid gray wolf and particle swarm optimization for feature selection. Int. J. Innov. Comput. Inf. Control, 16(3), 831-844.
  • [4] El-Kenawy, E. S. M., Khodadadi, N., Mirjalili, S., Abdelhamid, A. A., Eid, M. M., & Ibrahim, A. (2024). Greylag goose optimization: nature-inspired optimization algorithm. Expert Systems with Applications, 238, 122147.
  • [5] El-Kenawy, E. S. M., Mirjalili, S., Ibrahim, A., Alrahmawy, M., El-Said, M., Zaki, R. M., & Eid, M. M. (2021). Advanced meta-heuristics, convolutional neural networks, and feature selectors for efficient COVID-19 X-ray chest image classification. Ieee Access, 9, 36019 36037.
  • [6] Abdelhamid, A. A., El-Kenawy, E. S. M., Khodadadi, N., Mirjalili, S., Khafaga, D. S., Alharbi, A. H., ... & Saber, M. (2022). Classification of monkeypox images based on transfer learning and the Al-Biruni Earth Radius Optimization algorithm. Mathematics, 10(19), 3614.
  • [7] Ibrahim, A., Mirjalili, S., El-Said, M., Ghoneim, S. S., Al-Harthi, M. M., Ibrahim, T. F., & El-Kenawy, E. S. M. (2021). Wind speed ensemble forecasting based on deep learning using adaptive dynamic optimization algorithm. IEEE Access, 9, 125787-125804.
  • [8] El-Kenawy, E. S. M., Mirjalili, S., Alassery, F., Zhang, Y. D., Eid, M. M., El-Mashad, S. Y., ... & Abdelhamid, A. A. (2022). Novel meta heuristic algorithm for feature selection, unconstrained functions and engineering problems. IEEE Access, 10, 40536-40555.
  • [9] Abdelhamid, A. A., El-Kenawy, E. S. M., Alotaibi, B., Amer, G. M., Abdelkader, M. Y., Ibrahim, A., & Eid, M. M. (2022). Robust speech emotion recognition using CNN+ LSTM based on stochastic fractal search optimization algorithm. Ieee Access, 10, 49265-49284.
  • [10] Abdollahzadeh, B., Khodadadi, N., Barshandeh, S., Trojovský, P., Gharehchopogh, F. S., El-kenawy, E. S. M., ... & Mirjalili, S. (2024). Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning. Cluster Computing, 27(4), 5235-5283.
  • [11] Eid, M. M., El-kenawy, E. S. M., & Ibrahim, A. (2021, March). A binary sine cosine-modified whale optimization algorithm for feature selection. In 2021 National Computing Colleges Conference (NCCC) (pp. 1-6). IEEE.
  • [12] El-Kenawy, E. S. M., Mirjalili, S., Abdelhamid, A. A., Ibrahim, A., Khodadadi, N., & Eid, M. M. (2022). Meta-heuristic optimization and keystroke dynamics for authentication of smartphone users. Mathematics, 10(16), 2912.
  • [13] Abdelhamid, A. A., Towfek, S. K., Khodadadi, N., Alhussan, A. A., Khafaga, D. S., Eid, M. M., & Ibrahim, A. (2023). Waterwheel plant algorithm: a novel metaheuristic optimization method. Processes, 11(5), 1502.
  • [14] Alhussan, A. A., Abdelhamid, A. A., El-Kenawy, E. S. M., Ibrahim, A., Eid, M. M., Khafaga, D. S., & Ahmed, A. E. (2023). A binary waterwheel plant optimization algorithm for feature selection. IEEE Access, 11, 94227-94251.
  • [15] Hassib, E. M., El-Desouky, A. I., Labib, L. M., & El-Kenawy, E. S. M. (2020). WOA+ BRNN: An imbalanced big data classification framework using Whale optimization and deep neural network. soft computing, 24(8), 5573-5592.
  • [16] El-Kenawy, E. S. M., Abdelhamid, A. A., Ibrahim, A., Mirjalili, S., Khodadad, N., Alduailij, M. A., ... & Khafaga, D. S. (2023). Al-Biruni Earth Radius (BER) Metaheuristic Search Optimization Algorithm. Comput. Syst. Sci. Eng., 45(2), 1917-1934.
  • [17] Alharbi, A. H., Towfek, S. K., Abdelhamid, A. A., Ibrahim, A., Eid, M. M., & Khafaga, D. S. & Saber, M.(2023). Diagnosis of Monkeypox Disease Using Transfer Learning and Binary Advanced Dipper Throated Optimization Algorithm. Biomimetics, 8(3), 313.
  • [18] El-Kenawy, E. S. M., Mirjalili, S., Khodadadi, N., Abdelhamid, A. A., Eid, M. M., El-Said, M., & Ibrahim, A. (2023). Feature selection in wind speed forecasting systems based on meta-heuristic optimization. Plos one, 18(2), e0278491.
  • [19] Khodadadi, N., Abualigah, L., El-Kenawy, E. S. M., Snasel, V., & Mirjalili, S. (2022). An archive-based multi-objective arithmetic optimization algorithm for solving industrial engineering problems. IEEE Access, 10, 106673-106698.
  • [20] Eid, M. M., El-Kenawy, E. S. M., Khodadadi, N., Mirjalili, S., Khodadadi, E., Abotaleb, M., ... & Khafaga, D. S. (2022). Meta-heuristic optimization of LSTM-based deep network for boosting the prediction of monkeypox cases. Mathematics, 10(20), 3845.
  • [21] Khodadadi, N., Khodadadi, E., Al-Tashi, Q., El-Kenawy, E. S. M., Abualigah, L., Abdulkadir, S. J., ... & Mirjalili, S. (2023). BAOA: binary arithmetic optimization algorithm with K-nearest neighbor classifier for feature selection. IEEE Access, 11, 94094-94115.
  • [22] Salamai, A. A., El-kenawy, E. S. M., & Abdelhameed, I. (2021). Dynamic voting classifier for risk identification in supply chain 4.0. Computers, Materials & Continua, 69(3).
  • [23] Djaafari, A., Ibrahim, A., Bailek, N., Bouchouicha, K., Hassan, M. A., Kuriqi, A., ... & El-Kenawy, E. S. M. (2022). Hourly predictions of direct normal irradiation using an innovative hybrid LSTM model for concentrating solar power projects in hyper-arid regions. Energy Reports, 8, 15548-15562.