JCSIS
JCSIS

Sustainable Building Energy Optimization Through Metaheuristic Algorithms and Neural Network Solutions

Narcisa ZlatanHakan KhanNajaad OubeBlika
Volume 4

Abstract

The integration of metaheuristic algorithms with neural network models has emerged as a potent strategy for optimizing energy consumption in sustainable building designs. Metaheuristic techniques, such as genetic algorithms, particle swarm optimization, and simulated annealing, offer robust solutions for navigating complex, multidimensional design spaces, enabling the identification of optimal configurations for building systems. When combined with neural networks, which excel at modeling nonlinear relationships and predicting energy performance, these hybrid approaches facilitate precise control over heating, ventilation, and air conditioning (HVAC) systems, lighting, and other energy-intensive components. This synergy enhances the ability to forecast energy demands accurately and implement responsive control strategies, thereby reducing energy consumption and improving occupant comfort. The adoption of such integrated optimization frameworks supports the development of energy-efficient buildings, contributing to broader sustainability goals and compliance with stringent energy regulations.


Keywords

Sustainable Buildings, Energy Optimization, Metaheuristic Algorithms, Neural Networks, HVAC Control, Energy Efficiency

References

  • [1] El-Kenawy, E. S. M., Ibrahim, A., Mirjalili, S., Eid, M. M., & Hussein, S. E. (2020). Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images. IEEE access, 8, 179317-179335.
  • [2] El-Kenawy, E. S. M., Eid, M. M., Saber, M., & Ibrahim, A. (2020). MbGWO-SFS: Modified binary grey wolf optimizer based on stochastic fractal search for feature selection. IEEE Access, 8, 107635-107649.
  • [3] El-Kenawy, E. S., & Eid, M. (2020). Hybrid gray wolf and particle swarm optimization for feature selection. Int. J. Innov. Comput. Inf. Control, 16(3), 831-844.
  • [4] El-Kenawy, E. S. M., Khodadadi, N., Mirjalili, S., Abdelhamid, A. A., Eid, M. M., & Ibrahim, A. (2024). Greylag goose optimization: nature-inspired optimization algorithm. Expert Systems with Applications, 238, 122147.
  • [5] El-Kenawy, E. S. M., Mirjalili, S., Ibrahim, A., Alrahmawy, M., El-Said, M., Zaki, R. M., & Eid, M. M. (2021). Advanced meta-heuristics, convolutional neural networks, and feature selectors for efficient COVID-19 X-ray chest image classification. Ieee Access, 9, 36019 36037.
  • [6] Abdelhamid, A. A., El-Kenawy, E. S. M., Khodadadi, N., Mirjalili, S., Khafaga, D. S., Alharbi, A. H., ... & Saber, M. (2022). Classification of monkeypox images based on transfer learning and the Al-Biruni Earth Radius Optimization algorithm. Mathematics, 10(19), 3614.
  • [7] Ibrahim, A., Mirjalili, S., El-Said, M., Ghoneim, S. S., Al-Harthi, M. M., Ibrahim, T. F., & El-Kenawy, E. S. M. (2021). Wind speed ensemble forecasting based on deep learning using adaptive dynamic optimization algorithm. IEEE Access, 9, 125787-125804.
  • [8] El-Kenawy, E. S. M., Mirjalili, S., Alassery, F., Zhang, Y. D., Eid, M. M., El-Mashad, S. Y., ... & Abdelhamid, A. A. (2022). Novel meta heuristic algorithm for feature selection, unconstrained functions and engineering problems. IEEE Access, 10, 40536-40555.
  • [9] Abdelhamid, A. A., El-Kenawy, E. S. M., Alotaibi, B., Amer, G. M., Abdelkader, M. Y., Ibrahim, A., & Eid, M. M. (2022). Robust speech emotion recognition using CNN+ LSTM based on stochastic fractal search optimization algorithm. Ieee Access, 10, 49265-49284.
  • [10] Abdollahzadeh, B., Khodadadi, N., Barshandeh, S., Trojovský, P., Gharehchopogh, F. S., El-kenawy, E. S. M., ... & Mirjalili, S. (2024). Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning. Cluster Computing, 27(4), 5235-5283.
  • [11] Eid, M. M., El-kenawy, E. S. M., & Ibrahim, A. (2021, March). A binary sine cosine-modified whale optimization algorithm for feature selection. In 2021 National Computing Colleges Conference (NCCC) (pp. 1-6). IEEE.
  • [12] El-Kenawy, E. S. M., Mirjalili, S., Abdelhamid, A. A., Ibrahim, A., Khodadadi, N., & Eid, M. M. (2022). Meta-heuristic optimization and keystroke dynamics for authentication of smartphone users. Mathematics, 10(16), 2912.
  • [13] Abdelhamid, A. A., Towfek, S. K., Khodadadi, N., Alhussan, A. A., Khafaga, D. S., Eid, M. M., & Ibrahim, A. (2023). Waterwheel plant algorithm: a novel metaheuristic optimization method. Processes, 11(5), 1502.
  • [14] Alhussan, A. A., Abdelhamid, A. A., El-Kenawy, E. S. M., Ibrahim, A., Eid, M. M., Khafaga, D. S., & Ahmed, A. E. (2023). A binary waterwheel plant optimization algorithm for feature selection. IEEE Access, 11, 94227-94251.
  • [15] Hassib, E. M., El-Desouky, A. I., Labib, L. M., & El-Kenawy, E. S. M. (2020). WOA+ BRNN: An imbalanced big data classification framework using Whale optimization and deep neural network. soft computing, 24(8), 5573-5592.
  • [16] El-Kenawy, E. S. M., Abdelhamid, A. A., Ibrahim, A., Mirjalili, S., Khodadad, N., Alduailij, M. A., ... & Khafaga, D. S. (2023). Al-Biruni Earth Radius (BER) Metaheuristic Search Optimization Algorithm. Comput. Syst. Sci. Eng., 45(2), 1917-1934.
  • [17] Alharbi, A. H., Towfek, S. K., Abdelhamid, A. A., Ibrahim, A., Eid, M. M., & Khafaga, D. S. & Saber, M.(2023). Diagnosis of Monkeypox Disease Using Transfer Learning and Binary Advanced Dipper Throated Optimization Algorithm. Biomimetics, 8(3), 313.
  • [18] El-Kenawy, E. S. M., Mirjalili, S., Khodadadi, N., Abdelhamid, A. A., Eid, M. M., El-Said, M., & Ibrahim, A. (2023). Feature selection in wind speed forecasting systems based on meta-heuristic optimization. Plos one, 18(2), e0278491.
  • [19] Khodadadi, N., Abualigah, L., El-Kenawy, E. S. M., Snasel, V., & Mirjalili, S. (2022). An archive-based multi-objective arithmetic optimization algorithm for solving industrial engineering problems. IEEE Access, 10, 106673-106698.
  • [20] Eid, M. M., El-Kenawy, E. S. M., Khodadadi, N., Mirjalili, S., Khodadadi, E., Abotaleb, M., ... & Khafaga, D. S. (2022). Meta-heuristic optimization of LSTM-based deep network for boosting the prediction of monkeypox cases. Mathematics, 10(20), 3845.
  • [21] Khodadadi, N., Khodadadi, E., Al-Tashi, Q., El-Kenawy, E. S. M., Abualigah, L., Abdulkadir, S. J., ... & Mirjalili, S. (2023). BAOA: binary arithmetic optimization algorithm with K-nearest neighbor classifier for feature selection. IEEE Access, 11, 94094-94115.
  • [22] Salamai, A. A., El-kenawy, E. S. M., & Abdelhameed, I. (2021). Dynamic voting classifier for risk identification in supply chain 4.0. Computers, Materials & Continua, 69(3).
  • [23] Djaafari, A., Ibrahim, A., Bailek, N., Bouchouicha, K., Hassan, M. A., Kuriqi, A., ... & El-Kenawy, E. S. M. (2022). Hourly predictions of direct normal irradiation using an innovative hybrid LSTM model for concentrating solar power projects in hyper-arid regions. Energy Reports, 8, 15548-15562.