JCSIS
JCSIS

Deep Learning in Renewable Energy Optimization Through IoT-Based Smart Grid Technologies

Nizar M. SoufianHakan KhanLima Hongou
Volume 4

Abstract

The transition to renewable energy sources necessitates intelligent energy management systems capable of optimizing generation, distribution, and consumption. This research investigates the integration of deep learning algorithms with Internet of Things (IoT)-enabled smart grid technologies to enhance renewable energy optimization. By leveraging real-time data from distributed sensors and renewable energy sources—such as solar and wind—deep learning models predict energy demand, detect faults, and optimize energy distribution patterns. The study evaluates various deep learning architectures, including convolutional and recurrent neural networks, for their performance in dynamic energy environments. Results indicate significant improvements in energy efficiency, grid reliability, and decision-making processes, thereby supporting sustainable urban infrastructure development.


Keywords

Deep learning, renewable energy, IoT, smart grid, energy optimization, sustainable infrastructure

References

  • [1] El-Kenawy, E. S. M., Eid, M. M., Saber, M., & Ibrahim, A. (2020). MbGWO-SFS: Modified binary grey wolf optimizer based on stochastic fractal search for feature selection. IEEE Access, 8, 107635-107649.
  • [2] El-Kenawy, E. S., & Eid, M. (2020). Hybrid gray wolf and particle swarm optimization for feature selection. Int. J. Innov. Comput. Inf. Control, 16(3), 831-844.
  • [3] El-Kenawy, E. S. M., Khodadadi, N., Mirjalili, S., Abdelhamid, A. A., Eid, M. M., & Ibrahim, A. (2024). Greylag goose optimization: nature-inspired optimization algorithm. Expert Systems with Applications, 238, 122147.
  • [4] Abdollahzadeh, B., Khodadadi, N., Barshandeh, S., Trojovský, P., Gharehchopogh, F. S., El-kenawy, E. S. M., ... & Mirjalili, S. (2024). Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning. Cluster Computing, 27(4), 5235-5283.
  • [5] Khodadadi, N., Khodadadi, E., Al-Tashi, Q., El-Kenawy, E. S. M., Abualigah, L., Abdulkadir, S. J., ... & Mirjalili, S. (2023). BAOA: binary arithmetic optimization algorithm with K-nearest neighbor classifier for feature selection. IEEE Access, 11, 94094-94115.
  • [6] Khodadadi, N., Abualigah, L., El-Kenawy, E. S. M., Snasel, V., & Mirjalili, S. (2022). An archive-based multi-objective arithmetic optimization algorithm for solving industrial engineering problems. IEEE Access, 10, 106673-106698.
  • [7] El-Kenawy, E. S. M. T., & SM, E. (2019). A machine learning model for hemoglobin estimation and anemia classification. International Journal of Computer Science and Information Security (IJCSIS), 17(2), 100-108.
  • [8] El-kenawy, E. S. M. T. (2018). Solar radiation machine learning production depend on training neural networks with ant colony optimization algorithms. International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE), 7(5), 1-4.
  • [9] Hassib, E. M., El-Desouky, A. I., Labib, L. M., & El-Kenawy, E. S. M. (2020). WOA+ BRNN: An imbalanced big data classification framework using Whale optimization and deep neural network. soft computing, 24(8), 5573-5592.
  • [10] Kaveh, A., Talatahari, S., & Khodadadi, N. (2019). The hybrid invasive weed optimization-shuffled frog-leaping algorithm applied to optimal design of frame structures. Periodica Polytechnica Civil Engineering, 63(3), 882-897.
  • [11] Khodadadi, N., Abualigah, L., & Mirjalili, S. (2022). Multi-objective stochastic paint optimizer (MOSPO). Neural Computing and Applications, 34(20), 18035-18058.
  • [12] Kaveh, A., Talatahari, S., & Khodadadi, N. (2022). Stochastic paint optimizer: theory and application in civil engineering. Engineering with Computers, 1-32.
  • [13] Khodadadi, N., & Mirjalili, S. (2022). Truss optimization with natural frequency constraints using generalized normal distribution optimization. Applied Intelligence, 52(9), 10384-10397.
  • [14] Khodadadi, N., Soleimanian Gharehchopogh, F., & Mirjalili, S. (2022). MOAVOA: a new multi-objective artificial vultures optimization algorithm. Neural Computing and Applications, 34(23), 20791-20829.
  • [15] Khodadadi, N., Abualigah, L., Al-Tashi, Q., & Mirjalili, S. (2023). Multi-objective chaos game optimization. Neural Computing and Applications, 35(20), 14973-15004.